American University of Beirut Department of Civil and Environmental Engineering Spring 2008-2009
 NAME: Mr. Solution
 Instructor: Professor Fouad Kasti
 ID: CIVE210 Exam I

CIVE 210 Exam I Statics
 $11 / 2$ Hour Exam
 Sat Apr 4, 09
 1/1
 Closed Books

Problem \#1: (50\%)

The crane ABC consists of 3 rigid, weightless and straight bars AB, BC and AC . The crane is lifting a mass M with a weightless cable connected to C. A spring having $K=30 \mathrm{Kg} / \mathrm{cm}$ tie point B back to a rigid support at point D. Assume:

1- Bar AC and AB make angles 30° and 60° respectively with the horizontal
2- BD is perpendicular to AB
3- Hinge support at A
4- Length $\mathrm{AB}=2 \mathrm{~m}, \mathrm{BC}=4 \mathrm{~m}$
5- Drawing is not to scale.
Answer the following:
a- Draw the Free Body Diagram and indicate clearly all necessary information (10\%)
b- Determine the tension force in spring DB in terms of $\mathrm{M}(15 \%)$
$\sum \mathrm{M} @ \mathrm{~A}=\mathbf{0} \rightarrow \mathrm{Ts} * \mathrm{AB}=\mathrm{M}^{*} \mathrm{AC} * \cos (\mathbf{3 0}) \rightarrow \mathrm{Ts}=1 . \mathbf{5}^{*} \mathrm{M}$
c- Assuming the tension force capacity in the cable holding M at C is 10 Kg and the tension force capacity of the spring BD is 12 Kg , determine the maximum mass M that can be carried (10%)

$\mathrm{M}=\mathrm{T}$ cable $=10 \mathrm{Kg} \rightarrow \mathrm{Ts}=15 \mathrm{Kg}>12 \mathrm{Kg}$ capacity $\rightarrow \mathrm{Ts}=12 \mathrm{Kg} \& \mathrm{M}=8 \mathrm{Kg}$
d- In part C , determine the corresponding spring force and corresponding deformation. Indicate magnitudes, tension or compression, shortening or elongation (5\%) $\mathrm{Ts}=12 \mathrm{Kg}$ (Tension) $\rightarrow \Delta=12 / 30=\mathbf{0 . 4} \mathrm{cm}$ (Elongation)
e- In part C, determine the corresponding reactions at A. Indicate magnitudes and directions. (15\%)
$\sum \mathrm{Fx}=0 \rightarrow \mathrm{Ha}=\mathrm{Ts} * \cos (\mathbf{3 0})=\underline{10.4 \mathrm{Kg} \rightarrow=\mathrm{Ha}, ~} \sum \mathrm{Fy}=\mathbf{0} \rightarrow \mathrm{Ha}=\mathrm{Ts} * \sin (30)+8=\underline{14 \mathrm{Kg} \uparrow=\mathrm{Va}}$

Problem \#2: (50\%)

The rigid, weightless and straight bar $A B C$ is roller supported at A and B over a circular path of radius $R=24 \mathrm{~m}$ and subjected to a pair of forces P and F. P is acting at a point G located in the middle of segment $A B$ oriented perpendicular to AB, F is acting at tip C oriented at an angle α to the direction of bar ABC ds shown.
Assume:
1- The magnitude of $\mathrm{P}=60 \mathrm{~N}$
2- Frictionless and dimensionless roller supports A and B
3- Length $\mathrm{AB}=12 \mathrm{~m}, \mathrm{BC}=6 \mathrm{~m}$
4- Drawing is not to scale.
Answer the following:
a- Draw the Free Body Diagram and indicate clearly all necessary information (10%)
$\mathrm{OP}=\operatorname{sqrt}\left(24^{\wedge} 2-6^{\wedge} \mathbf{2}\right)=23.24$, angle $\mathrm{OAP}=\cos ^{-1}(6 / 24)=75.52^{\circ}$
b- Determine the minimum force F required for equilibrium and the corresponding angle α and reactions at A and B. Indicate magnitudes and directions (25%)
Na, Nb and P passes through center of circle. $\sum \mathrm{M} @ \mathbf{O}=\mathbf{0} \rightarrow \mathrm{F} * \mathrm{dF}=\mathbf{0} \rightarrow \underline{\text { Minimum } \mathrm{F}=0, \alpha=\text { any }}$
$\mathrm{Na}=\mathrm{Nb}=60 /(2 * \sin 75.52)=30.98=\mathrm{Na}=\mathrm{Nb}$
c- Determine the minimum force $\overline{\mathrm{F}}$ required to cause roller at B to barely touch the ground (reaction at $\mathrm{B}=0$) and the corresponding reaction at A . Indicate magnitudes and directions (15\%)
$\Sigma M @ O=0 \rightarrow F$ passes thru $O \rightarrow \alpha=\tan ^{-1}(O P / P C)=\tan ^{-1}(23.24 / 12)=\underline{62.69^{\circ}=\alpha}$
$\sum \mathrm{Fx}=0 \rightarrow \mathrm{~F}^{*} \cos \alpha=\mathrm{Na} * \cos 75.52 \rightarrow \mathrm{Na}=1.84^{*} \mathrm{~F}$
$\sum \mathrm{Fy}=\mathbf{0} \rightarrow \mathrm{F} * \sin \alpha+\mathrm{Na}^{*} \sin 75.52=60 \rightarrow \mathrm{~F}=22.5 \mathrm{~N}, \mathrm{Na}=41.4 \mathrm{~N}$

